El ácido ribonucleico (ARN o RNA) es un ácido nucleico formado por una larga cadena de nucleótidos. Se ubica en las células de tipo procariota y las de tipo eucariota. El ARN se define también como un material genético de ciertos virus (virus ARN) y, en los organismos celulares, molécula que dirige las etapas intermedias de la síntesis proteica. En los virus ARN, esta molécula dirige dos procesos: la síntesis de proteínas (producción de las proteínas que forman la cápsula del virus) y replicación (proceso mediante el cual el ARN forma una copia de sí mismo). En los organismos celulares es otro tipo de material genético, llamado ácido desoxirribonucleico (ADN), el que lleva la información que determina la estructura de las proteínas. Pero el ADN no puede actuar solo, y se vale del ARN para transferir esta información vital durante la síntesis de proteínas (producción de las proteínas que necesita la célula para sus actividades y su desarrollo).
Como el ADN, el ARN está formado por una cadena de compuestos químicos llamados nucleótidos. Cada uno está formado por una molécula de un azúcar llamado ribosa, un grupo fosfato y uno de cuatro posibles compuestos nitrogenados llamados bases: adenina, guanina, uracilo y citosina. Estos compuestos se unen igual que en el ácido desoxirribonucleico (ADN). El ARN se diferencia químicamente del ADN por dos cosas: la molécula de azúcar del ARN contiene un átomo de oxígeno que falta en el ADN; y el ARN contiene la base uracilo en lugar de la timina del ADN.
El ARN es transcrito desde el ADN por enzimas llamadas ARN polimerasas y procesado en el transcurso por muchas más proteínas. El uracilo, aunque es muy diferente, puede formar puentes de hidrógeno con la adenina, lo mismo que la timina lo hace en el ADN. El porqué el ARN contiene uracilo en vez de timina es actualmente una pregunta sin respuesta.
FLUJO DE LA INFORMACION
Como el ADN, el ARN está formado por una cadena de compuestos químicos llamados nucleótidos. Cada uno está formado por una molécula de un azúcar llamado ribosa, un grupo fosfato y uno de cuatro posibles compuestos nitrogenados llamados bases: adenina, guanina, uracilo y citosina. Estos compuestos se unen igual que en el ácido desoxirribonucleico (ADN). El ARN se diferencia químicamente del ADN por dos cosas: la molécula de azúcar del ARN contiene un átomo de oxígeno que falta en el ADN; y el ARN contiene la base uracilo en lugar de la timina del ADN.
El ARN es transcrito desde el ADN por enzimas llamadas ARN polimerasas y procesado en el transcurso por muchas más proteínas. El uracilo, aunque es muy diferente, puede formar puentes de hidrógeno con la adenina, lo mismo que la timina lo hace en el ADN. El porqué el ARN contiene uracilo en vez de timina es actualmente una pregunta sin respuesta.
FLUJO DE LA INFORMACION
El material genético de las células se encuentra en forma de ADN. Dentro de las moléculas de ADN se encuentra la información necesaria para sintetizar las proteínas que utiliza el organismo; pero el proceso no es lineal, es bastante complejo. El ADN no se traduce directamente en proteínas.
En las células eucariotas el ADN se encuentra encerrado en el núcleo. La síntesis de ADN se hace en el núcleo, así como también la síntesis de ARN, pero la síntesis de proteínas ocurre en el citoplasma. El mecanismo por el cual la información se trasvasa desde el núcleo celular al citoplasma es mediante la trascripción del ARN a partir del ADN y de la traducción de proteínas a partir de ARN.
ESTRUCTURA
En las células eucariotas el ADN se encuentra encerrado en el núcleo. La síntesis de ADN se hace en el núcleo, así como también la síntesis de ARN, pero la síntesis de proteínas ocurre en el citoplasma. El mecanismo por el cual la información se trasvasa desde el núcleo celular al citoplasma es mediante la trascripción del ARN a partir del ADN y de la traducción de proteínas a partir de ARN.
ESTRUCTURA
Similar a la del ADN pero con diferencias en su composición. Lleva una sola cadena de polinucleotido. En varios tipos de ARN se encuentra una estructura secundaria que se parece a una cadena de ADN y es que la cadena lineal del ARN toma forma de horquilla uniendose las bases mediante puentes de hidrógeno. El ARN se encuentra en la pared de los ribosomas. Hay varios tipos y cada uno de ellos va a desempeñar una función diferente en la síntesis de proteinas y también en la transferencia de información del ADN. Se puede afirmar que el ARN se sintetiza en el nucleo, como un filamento complementario a una de las cadenas del ADN. En el momento que se sintetiza el ARN existe dentro del nucleo un híbrido ADN-ARN de vida corta. Una vez separado el ARN atraviesa la membrana nuclear y se dirige a los ribosomas que se encuentran en el citoplasma, es el ARN mensajero. El ARN ribosómico es el que se encuentra en los ribosomas unido a las proteinas. Una vez que el ARN mensajero se une a los ribosomas sirve como molde para la interconexión entre los diferentes aminoacidos. Son transportados por pequeñas moléculas solubles de ARN que se conoce como ARN transportador.
Como norma general puede decirse que el ARN mantiene una estructura filamentosa o cadena sencilla aunque en algunas ocasiones se presente con dos filamentos. Por este motivo no presenta gran estabilidad para ello se enrosca obteniendo una mayor estabilidad.
Como norma general puede decirse que el ARN mantiene una estructura filamentosa o cadena sencilla aunque en algunas ocasiones se presente con dos filamentos. Por este motivo no presenta gran estabilidad para ello se enrosca obteniendo una mayor estabilidad.
LA SINTESIS PROTEICA Y EL ARN
La síntesis de proteínas o traducción del ARN es el proceso anabólico mediante el cual se forman las proteínas a partir de los aminoácidos. Es el paso siguiente a la transcripción del ADN a ARN. Como existen 20 aminoácidos diferentes y sólo hay cuatro nucleótidos en el ARN (Adenina, Uracilo, Citosina y Guanina), es evidente que la relación no puede ser un aminoácido por cada nucleótido, ni tampoco por cada dos nucleótidos, ya que los cuatro tomados de dos en dos, sólo dan dieciséis posibilidades. La colinearidad debe establecerse como mínimo entre cada aminoácido y tripletes de nucleótidos. Como hay sesenta y cuatro tripletes diferentes (combinación de cuatro elementos o nucleótidos tomados de tres en tres con repetición), es obvio que algunos aminoácidos deben tener correspondencia con varios tripletes diferentes. Los tripletes que codifican aminoácidos se denominan codones. La confirmación de esta hipótesis se debe a Nirenbert, Ochoa y Khorana.
En la biosíntesis de proteínas se pueden distinguir las siguientes etapas:
a) Activación de los aminoácidos.
b) Traducción:
Iniciación de la síntesis.
Elongación de la cadena polipeptídica.
Terminación de la síntesis.
c) Asociación de varias cadenas polipeptídicas y a veces de grupos prostésicos para constituir las proteínas.
La síntesis de proteínas o traducción tiene lugar en los ribosomas del citoplasma celular. Los aminoácidos son transportados por el ARN de transferencia (ARNt), específico para cada uno de ellos, y son llevados hasta el ARN mensajero (ARNm), donde se aparean el codón de éste y el anticodón del ARN de transferencia, por complementariedad de bases, y de ésta forma se sitúan en la posición que les corresponde.
Una vez finalizada la síntesis de una proteína, el ARN mensajero queda libre y puede ser leído de nuevo. De hecho, es muy frecuente que antes de que finalice una proteína ya está comenzando otra, con lo cual, una misma molécula de ARN mensajero, está siendo utilizada por varios ribosomas simultáneamente.
Activación de los aminoácidos Los aminoácidos en presencia de la enzima aminoacil-ARNt-sintetasa y de ATP son capaces de unirse a un ARN de transferencia específico y dan lugar a un aminoacil-ARNt, liberándose AMP, fosfato y quedando libre la enzima, que vuelve a actuar.
ETAPAS
En la biosíntesis de proteínas se pueden distinguir las siguientes etapas:
a) Activación de los aminoácidos.
b) Traducción:
Iniciación de la síntesis.
Elongación de la cadena polipeptídica.
Terminación de la síntesis.
c) Asociación de varias cadenas polipeptídicas y a veces de grupos prostésicos para constituir las proteínas.
La síntesis de proteínas o traducción tiene lugar en los ribosomas del citoplasma celular. Los aminoácidos son transportados por el ARN de transferencia (ARNt), específico para cada uno de ellos, y son llevados hasta el ARN mensajero (ARNm), donde se aparean el codón de éste y el anticodón del ARN de transferencia, por complementariedad de bases, y de ésta forma se sitúan en la posición que les corresponde.
Una vez finalizada la síntesis de una proteína, el ARN mensajero queda libre y puede ser leído de nuevo. De hecho, es muy frecuente que antes de que finalice una proteína ya está comenzando otra, con lo cual, una misma molécula de ARN mensajero, está siendo utilizada por varios ribosomas simultáneamente.
Activación de los aminoácidos Los aminoácidos en presencia de la enzima aminoacil-ARNt-sintetasa y de ATP son capaces de unirse a un ARN de transferencia específico y dan lugar a un aminoacil-ARNt, liberándose AMP, fosfato y quedando libre la enzima, que vuelve a actuar.
ETAPAS
Es la primera etapa de la traducción o síntesis de proteínas. El ARNm se une a la subunidad menor de los ribosomas. A éstos se asocia el aminoacil-ARNt, gracias a que el ARNt tiene en una de sus asas un triplete de nucleótidos denominado anticodón, que se asocia al primer triplete codón del ARNm según la complementariedad de las bases. A este grupo de moléculas se une la subunidad ribosómica mayor, formándose el complejo ribosomal o complejo activo. Todos estos procesos están catalizados por los llamados factores de iniciación (FI). El primer triplete o codón que se traduce es generalmente el AUG, que corresponde con el aminoácido metionina en eucariotas. En procariotas es la fenilmetionina.
Elongación de la cadena polipeptídica
El complejo ribosomal posee dos sitios de unión o centros. El centro peptidil o centro P, donde se sitúa el primero aminoacil-ARNt y el centro aceptor de nuevos aminoacil-ARNt o centro A. El radical carboxilo (-COOH) del aminoácido iniciado se une con el radical amino (NH2) del aminoácido siguiente mediante enlace peptídico. Esta unión es catalizada por la enzima peptidil-transferasa. El centro P queda pues ocupado por un ARNt sin aminoácido. El ARNt sin aminoácido sale del ribosoma. Se produce la translocación ribosomal. El dipeptil-ARNt queda ahora en el centro P. Todo ello es catalizado por los factores de elongación (FE) y precisa GTP. Según la terminación del tercer codón, aparece el tercer aminoacil-ARNt y ocupa el centro A. Luego se forma el tripéptido en A y posteriormente el ribosoma realiza su segunda translocación. Estos pasos se pueden repetir múltiples veces, hasta cientos de veces, según el número de aminoácidos que contenga el polipéptido. La traslocación del ribosama implica el desplazamiento del ribosama a lo largo de ARNm en sentido 5'-> 3'.
Terminación de la síntesis de la cadena polipeptídica
Terminación de la síntesis de la cadena polipeptídica
El final de la síntesis se presenta por los llamados tripletes sin sentido, también denominados codones stop. Son tres: UAA, UAG y UGA. No existe ningún ARNt cuyo anticodón sea complementario de ellos y, por lo tanto, la biosíntesis del polipéptido se interrumpe. Indican que la cadena polipeptídica ya ha terminado. Este proceso viene regulado por los factores de liberación, de naturaleza proteica, que se sitúan en el sitio A y hacen que la peptidil-transferasa separe, por hidrólisis, la cadena polipeptídica del ARNt. Un ARNm, si es lo suficientemente largo, puede ser leído o traducido, por varios ribosomas a la vez, uno detrás de otro. Al microscopio electrónico, se observa como un rosario de ribosomas, que se denomina polirribosoma o polisoma.
No hay comentarios:
Publicar un comentario